LECTURE # 26, 11-23-09

\[\mu \text{ vs } T \text{ for different phases} \]

- Recall our derivation of

\[d\mu = -S^*_m \, dT + V_m \, dP \]

for infinitesimal changes in \(T \) & \(P \) for a pure (single-component) system in a single phase

- It follows that

\[(\frac{\partial \mu}{\partial T})_P = -S^*_m, \quad (\frac{\partial \mu}{\partial P})_T = V_m \]

- Recall also that \(S^*_m \) depends only weakly on \(T \) \(\leftarrow \Delta S^*_m \approx C_m \ln \frac{T_2}{T_1} \) within a single phase

- And \(S^*_m \) jumps by \(\Delta H/T \) upon each change of phase: \(\Delta H_{\text{fus}}/T_{\text{fus}} \) & \(\Delta H_{\text{vap}}/T_{\text{vap}} \) both \(> 0 \)

\[\Rightarrow S^*_m \text{ sol} < S^*_m \text{ eq} < S^*_m \text{ gas} \]

- Consistent with above observations, we have

\[\begin{align*}
\text{sol.} & \quad \text{eq.} & \quad \text{gas} \\
0 & \quad T_{\text{fus}} & \quad T_{\text{vap}} \\
0 & \quad T_m & \quad T_b
\end{align*} \]
And from \(\frac{\partial \mu}{\partial T} \big|_p = -S_m \) it follows that

![Graph Fig. 8.1](image)

NOTE: curves are slightly concave downwards, because \(S_m \) increases slightly with \(T \) in each phase.

NOTE ALSO: \((\mu \text{ vs } T) \)-slope \(\leftrightarrow -S_m \) is smallest for sol. and largest for gas.

\[\text{Increase in } T \Rightarrow \text{switch from sol. \(\rightarrow \) liq.} \]

\[\text{followed by switch from liq. \(\rightarrow \) gas} \]

in order for \(M \leftrightarrow G_m \) to be minimum.

Two-phase coexistence at \(T_m \), and at \(T_b \).

\[\frac{\partial \mu}{\partial P} \big|_T = +V_m > 0 \Rightarrow \text{all of above } \mu \text{ vs } T \]

curves are translated upwards as pressure is increased.
Fig. 8.2: left

- **EACH SHIFT UPWARD OF \(\mu \) vs \(T \)**
- **IS EQUAL TO**
- \((\Delta P)V_m \) **FOR THAT PHASE**

\[T_m, T'_m, T_b, T'_b \]

- **Dashed curves show \(\mu \) vs \(T \)**
- **for each phase at higher pressure**

\[\text{sol.} - \text{liq.} - \text{gas} \]

- **Freezing/melting (\(T_m \)) and boiling (\(T_b \)) temperatures are higher at higher pressure because \(V_m^{\text{gas}} > V_m^{\text{liq}} > V_m^{\text{sol}} \)**
 - (hence freezing & boiling point elevations)

- **For a very few substances -- notably, water --**
 - \(V_m^{\text{liq}} < V_m^{\text{sol}} \) \(\implies \) **freezing point depression**
 - (see Fig. 8.2: right)

\[\rightarrow \text{If pressure is decreased enough, i.e.,} \]

- \(\mu \) \(\text{gas} \) vs \(T \) curve **displaced sufficiently downward**, it will cross the \(\mu \) \(\text{sol} \) vs \(T \) curve before (at lower temperature than) it crosses the \(\mu \) \(\text{liq} \) vs \(T \) curve, \(\implies \) **"sublime"** (vaporize)

SOLID WILL "SUBLIME" (VAPORIZE)

INSTEAD OF MELT
At a somewhat higher pressure than that above, we have a three-phase coexistence.

We can collect all of the above results into a P vs T phase diagram: